CVE-2017-5624 (oxygenos)

CVE-2017-5624 (oxygenos)

An issue was discovered in OxygenOS before 4.0.3 for OnePlus 3 and 3T. The attacker can persistently make the (locked) bootloader start the platform with dm-verity disabled, by issuing the ‘fastboot oem disable_dm_verity’ command. Having dm-verity disabled, the kernel will not verify the system partition (and any other dm-verity protected partition), which may allow for persistent code execution and privilege escalation.

Source: CVE-2017-5624 (oxygenos)

CVE-2017-5626 (oxygenos)

CVE-2017-5626 (oxygenos)

OxygenOS before version 4.0.2, on OnePlus 3 and 3T, has two hidden fastboot oem commands (4F500301 and 4F500302) that allow the attacker to lock/unlock the bootloader, disregarding the ‘OEM Unlocking’ checkbox, without user confirmation and without a factory reset. This allows for persistent code execution with high privileges (kernel/root) with complete access to user data.

Source: CVE-2017-5626 (oxygenos)

CVE-2017-5624

CVE-2017-5624

An issue was discovered in OxygenOS before 4.0.3 for OnePlus 3 and 3T. The attacker can persistently make the (locked) bootloader start the platform with dm-verity disabled, by issuing the ‘fastboot oem disable_dm_verity’ command. Having dm-verity disabled, the kernel will not verify the system partition (and any other dm-verity protected partition), which may allow for persistent code execution and privilege escalation.

Source: CVE-2017-5624

CVE-2017-5626

CVE-2017-5626

OxygenOS before version 4.0.2, on OnePlus 3 and 3T, has two hidden fastboot oem commands (4F500301 and 4F500302) that allow the attacker to lock/unlock the bootloader, disregarding the ‘OEM Unlocking’ checkbox, without user confirmation and without a factory reset. This allows for persistent code execution with high privileges (kernel/root) with complete access to user data.

Source: CVE-2017-5626

CVE-2017-6444

CVE-2017-6444

The MikroTik Router hAP Lite 6.25 has no protection mechanism for unsolicited TCP ACK packets in the case of a fast network connection, which allows remote attackers to cause a denial of service (CPU consumption) by sending many ACK packets. After the attacker stops the exploit, the CPU usage is 100% and the router requires a reboot for normal operation.

Source: CVE-2017-6444