CVE-2019-14242

CVE-2019-14242

An issue was discovered in Bitdefender products for Windows (Bitdefender Endpoint Security Tool versions prior to 6.6.8.115; and Bitdefender Antivirus Plus, Bitdefender Internet Security, and Bitdefender Total Security versions prior to 23.0.24.120) that can lead to local code injection. A local attacker with administrator privileges can create a malicious DLL file in %SystemRoot%System32 that will be executed with local user privileges.

Source: CVE-2019-14242

CVE-2019-1552

CVE-2019-1552

OpenSSL has internal defaults for a directory tree where it can find a configuration file as well as certificates used for verification in TLS. This directory is most commonly referred to as OPENSSLDIR, and is configurable with the –prefix / –openssldir configuration options. For OpenSSL versions 1.1.0 and 1.1.1, the mingw configuration targets assume that resulting programs and libraries are installed in a Unix-like environment and the default prefix for program installation as well as for OPENSSLDIR should be ‘/usr/local’. However, mingw programs are Windows programs, and as such, find themselves looking at sub-directories of ‘C:/usr/local’, which may be world writable, which enables untrusted users to modify OpenSSL’s default configuration, insert CA certificates, modify (or even replace) existing engine modules, etc. For OpenSSL 1.0.2, ‘/usr/local/ssl’ is used as default for OPENSSLDIR on all Unix and Windows targets, including Visual C builds. However, some build instructions for the diverse Windows targets on 1.0.2 encourage you to specify your own –prefix. OpenSSL versions 1.1.1, 1.1.0 and 1.0.2 are affected by this issue. Due to the limited scope of affected deployments this has been assessed as low severity and therefore we are not creating new releases at this time. Fixed in OpenSSL 1.1.1d (Affected 1.1.1-1.1.1c). Fixed in OpenSSL 1.1.0l (Affected 1.1.0-1.1.0k). Fixed in OpenSSL 1.0.2t (Affected 1.0.2-1.0.2s).

Source: CVE-2019-1552

CVE-2019-10130

CVE-2019-10130

A vulnerability was found in PostgreSQL versions 11.x up to excluding 11.3, 10.x up to excluding 10.8, 9.6.x up to, excluding 9.6.13, 9.5.x up to, excluding 9.5.17. PostgreSQL maintains column statistics for tables. Certain statistics, such as histograms and lists of most common values, contain values taken from the column. PostgreSQL does not evaluate row security policies before consulting those statistics during query planning; an attacker can exploit this to read the most common values of certain columns. Affected columns are those for which the attacker has SELECT privilege and for which, in an ordinary query, row-level security prunes the set of rows visible to the attacker.

Source: CVE-2019-10130

CVE-2019-10142

CVE-2019-10142

A flaw was found in the Linux kernel’s freescale hypervisor manager implementation, kernel versions 5.0.x up to, excluding 5.0.17. A parameter passed to an ioctl was incorrectly validated and used in size calculations for the page size calculation. An attacker can use this flaw to crash the system, corrupt memory, or create other adverse security affects.

Source: CVE-2019-10142

CVE-2019-14318

CVE-2019-14318

Crypto++ 8.3.0 and earlier contains a timing side channel in ECDSA signature generation. This allows a local or remote attacker, able to measure the duration of hundreds to thousands of signing operations, to compute the private key used. The issue occurs because scalar multiplication in ecp.cpp (prime field curves, small leakage) and algebra.cpp (binary field curves, large leakage) is not constant time and leaks the bit length of the scalar among other information.

Source: CVE-2019-14318

CVE-2019-10141

CVE-2019-10141

A vulnerability was found in openstack-ironic-inspector all versions excluding 5.0.2, 6.0.3, 7.2.4, 8.0.3 and 8.2.1. A SQL-injection vulnerability was found in openstack-ironic-inspector’s node_cache.find_node(). This function makes a SQL query using unfiltered data from a server reporting inspection results (by a POST to the /v1/continue endpoint). Because the API is unauthenticated, the flaw could be exploited by an attacker with access to the network on which ironic-inspector is listening. Because of how ironic-inspector uses the query results, it is unlikely that data could be obtained. However, the attacker could pass malicious data and create a denial of service.

Source: CVE-2019-10141

CVE-2018-16871

CVE-2018-16871

A flaw was found in the Linux kernel’s NFS implementation, all versions 3.x and all versions 4.x up to 4.20. An attacker, who is able to mount an exported NFS filesystem, is able to trigger a null pointer dereference by using an invalid NFS sequence. This can panic the machine and deny access to the NFS server. Any outstanding disk writes to the NFS server will be lost.

Source: CVE-2018-16871